Seminar August 30 – Neil Hoffman

On August 30th, the Geometry-Topology Seminar will kick off the fall semester by hosting Neil Hoffman of Boston College.  He will speak about:

Title: Hidden symmetries and cyclic commensurability for small knot complements

Abstract: Two hyperbolic orbifolds are commensurable if they share a common finite sheeted cover. Commensurability forms an equivalence relation on the set of hyperbolic orbifolds. Conjecturally, there are only three knot complements in a given commensurability class. Furthermore, if two knot complements are commensurable, Boileau, Boyer, Cebanu, and Walsh show that they are either cyclically commensurable, ie cover an orbifold with multiple finite cyclic fillings or they admit hidden symmetries, ie they cover an orbifold with a rigid cusp. After providing some of the necessary background, I will show that small, cyclically commensurable knot complements do not admit hidden symmetries.

This entry was posted in seminar announcement and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s